Login / Signup

Supersaturation with water explains the unusual adhesion of aggregate glue in the webs of the moth-specialist spider, Cyrtarachne akirai.

Candido DiazAkio TanikawaTadashi MiyashitaGaurav AmarpuriDharamdeep JainAli DhinojwalaTodd A Blackledge
Published in: Royal Society open science (2018)
Orb webs produced by araneoid spiders depend upon aggregate glue-coated capture threads to retain their prey. Moths are challenging prey for most spiders because their scales detach and contaminate the glue droplets, significantly decreasing adhesion. Cyrtarachne are moth-specialist orb-weaving spiders whose capture threads adhere well to moths. We compare the adhesive properties and chemistry of Cyrtarachne aggregate glue to other orb-weaving spiders to test hypotheses about their structure, chemistry and performance that could explain the strength of Cyrtarachne glue. We show that the unusually large glue droplets on Cyrtarachne capture threads make them approximately 8 times more adhesive on glass substrate than capture threads from typical orb-weaving species, but Cyrtarachne adhesion is similar to that of other species after normalization by glue volume. Glue viscosity reversibly changes over 1000-fold in response to atmospheric humidity, and the adhesive strength of many species of orb spiders is maximized at a viscosity of approximately 105-106 cst where the contributions of spreading and bulk cohesion are optimized. By contrast, viscosity of Cyrtarachne aggregate glue droplets is approximately 1000 times lower at maximum adhesive humidity, likely facilitating rapid spreading across moth scales. Water uptake by glue droplets is controlled, in part, by hygroscopic low molecular weight compounds. NMR showed evidence that Cyrtarachne glue contains a variety of unknown low molecular weight compounds. These compounds may help explain how Cyrtarachne produces such exceptionally large and low viscosity glue droplets, and also why these glue droplets rapidly lose water volume after brief ageing or exposure to even slightly dry (e.g. < 80% RH) conditions, permanently reducing their adhesion. We hypothesize that the combination of large glue droplet size and low viscosity helps Cyrtarachne glue to penetrate the gaps between moth scales.
Keyphrases
  • magnetic resonance
  • computed tomography
  • magnetic resonance imaging
  • escherichia coli
  • biofilm formation
  • high resolution
  • mass spectrometry
  • cystic fibrosis
  • sensitive detection
  • quantum dots
  • particulate matter