Fluorescent carbon dots from water hyacinth as detection sensors for ferric ions: the preparation and optimisation using response surface methodology.
Qiren TanXiaoying LiPeng SunJie ZhaoQinyan YangLumei WangYun DengGuoqing ShenPublished in: Analytical methods : advancing methods and applications (2022)
The search for alternatives to chemicals from natural products as precursors for the preparation of highly doped carbon dots (CDs) remains challenging. Novel CDs (W-CDs) were synthesised using a one-step pyrolysis method with wastewater hyacinth as the sole carbon and nitrogen source at a mild temperature without using any surface-activating reagents or salt. The obtained W-CDs emitted strong blue fluorescence under 365 nm UV light excitation, with a quantum yield of 15.12%. The Box-Behnken design of the response surface methodology was applied to optimize the W-CD preparation conditions, including the reaction temperature, reaction time and weight of water hyacinths. The temperature was found to be the most important factor affecting the fluorescence intensity of the W-CDs. Additionally, the fluorescence sensor based on W-CDs demonstrated excellent selectivity towards ferric (Fe) ions, with a limit of detection of 2.35 μM. The fluorescent sensor was successfully applied for detecting Fe 3+ in real water samples with a recovery of 97.80-103.10%. Hence, the pyrolysis of water hyacinth is proven to be a rapid, effective and green approach for CDs and provides a novel method for recycling water hyacinth.
Keyphrases