Login / Signup

Improving Predictions of Indoor Aerosol Concentrations of Outdoor Origin by Considering the Phase Change of Semivolatile Material Driven by Temperature and Mass-Loading Gradients.

Bryan E CummingsAnita M AveryPeter F DeCarloMichael S Waring
Published in: Environmental science & technology (2021)
Outdoor aerosols experience environmental changes as they are transported indoors, including outdoor-to-indoor temperature and mass-loading gradients, which can reduce or enhance their indoor concentrations due to repartitioning driven by changes in thermodynamic equilibrium states. However, the complexity required to model repartitioning typically hinders its inclusion in studies predicting indoor exposure to ambient aerosols. To facilitate exposure predictions, this work used an explicit thermodynamic indoor aerosol model to simulate outdoor-to-indoor aerosol repartitioning typical for residential and office buildings across the 16 U.S. climate zones over an annual time horizon. Results demonstrate that neglecting repartitioning when predicting indoor concentrations can produce errors of up to 80-100% for hydrocarbon-like organic aerosol, 40-60% for total organic aerosol, 400% for ammonium nitrate, and 60% (typically 3 μg/m3) for the total PM2.5 aerosol. Underpredictions were more likely for buildings in hotter than colder regions, and for residences than offices, since both cooler indoor air and more meaningful residential organic aerosol concentrations encourage condensation of semivolatile organics. Furthermore, a method for computing correction factors to more easily account for thermodynamic repartitioning is provided. Applying these correction factors to mechanical-only aerosol predictions significantly reduced errors to <0.5 μg/m3 for the total indoor PM2.5 while bypassing explicit thermodynamic simulations.
Keyphrases
  • air pollution
  • particulate matter
  • water soluble
  • emergency department
  • nitric oxide
  • climate change
  • aqueous solution
  • drug induced