Login / Signup

Amorphous-Crystalline Interfaces on Hollow Nanocubes Derived from Ir-Doped Ni-Fe-Zn Prussian Blue Analog Enables High Capability of Alkaline/Acidic/Saline Water Oxidations.

HyukSu HanSo Jung KimSun Young JungDongjo OhArpan Kumar NayakJin Uk JangJunghwan BangSunghwan YeoTae Ho Shin
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Development of highly efficient and robust electrocatalysts for oxygen evolution reaction (OER) under specific electrolyte is a key to actualize commercial low-temperature water electrolyzers. Herein, a rational catalyst design strategy is first reported based on amorphous-crystalline (a-c) interfacial engineering to achieve high catalytic activity and durability under diverse electrolytes that can be used for all types of low-temperature water electrolysis. Abundant a-c interface (ACI) is implemented into a hollow nanocubic (pre)-electrocatalyst which is derived from Ir-doped Ni-Fe-Zn Prussian blue analogues (PBA). The implemented c-a interface is well maintained during prolonged OER in alkaline, alkalized saline, and acidic electrolytes demonstrating its diverse functionality for water electrolysis. Notably, the final catalyst exhibits superior catalytic activity with excellent durability for OER compared to that of benchmark IrO 2 catalyst, regardless of chemical environment of electrolytes. Hence, this work can be an instructive guidance for developing the ACI engineered electroctalyst which can be diversely used for different types of low-temperature electrolyzers.
Keyphrases
  • ionic liquid
  • highly efficient
  • metal organic framework
  • room temperature
  • solid state
  • visible light
  • gold nanoparticles
  • simultaneous determination