Login / Signup

Spatiotemporal data analysis with chronological networks.

Leonardo N FerreiraDidier A Vega-OliverosMoshé CotacallapaManoel F CardosoMarcos G QuilesLiang ZhaoElbert E N Macau
Published in: Nature communications (2020)
The number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of dividing a geometric space into grid cells represented by nodes connected chronologically. Strong links in the network represent consecutive recurrent events between cells. The chronnet construction process is fast, making the model suitable to process large data sets. Using artificial and real data sets, we show how chronnets can capture data properties beyond simple statistics, like frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Therefore, we conclude that chronnets represent a robust tool for the analysis of spatiotemporal data sets.
Keyphrases