Login / Signup

The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex.

Nana NishioKenji HayashiAyako Wendy IshikawaYumiko Yoshimura
Published in: The Journal of physiology (2021)
Early visual experience is crucial for the maturation of visual cortical functions. It has been demonstrated that the orientation and direction preferences in individual neurons of the primary visual cortex are well established immediately after eye-opening. The postnatal development of spatial frequency (SF) tuning and its dependence on visual experience, however, has not been thoroughly quantified. In this study, macroscopic imaging with flavoprotein autofluorescence revealed that the optimal SFs shift towards higher frequency values during normal development in mouse primary visual cortex. This developmental shift was impaired by binocular deprivation during the sensitive period, postnatal 3 weeks (PW3) to PW6. Furthermore, two-photon Ca2+ imaging revealed that the developmental shift of the optimal SFs, depending on visual experience, concurrently occurs in excitatory neurons and parvalbumin-positive inhibitory interneurons (PV neurons). In addition, some excitatory and PV neurons exhibited a preference for visual stimuli consisting of particularly high SFs and posterior directions at relatively early developmental stages; this preference was not affected by binocular deprivation. Thus, there may be two distinct developmental mechanisms for the establishment of SF preference depending on the frequency values. After PW3, SF tuning for neurons tuned to standard frequency ranges was sharper in excitatory neurons and slightly broader in PV neurons, leading to considerably attenuated SF tuning in PV neurons compared to excitatory neurons by PW5. Our findings suggest that early visual experience is far more important than orientation/direction selectivity for the development of the neural representation of the diverse SFs.
Keyphrases
  • spinal cord
  • preterm infants
  • spinal cord injury
  • protein kinase
  • fluorescence imaging