Login / Signup

Synthesis, crystal structures and properties of the new compounds K7-xAg1+x(XO4)4 (X = Mo, W).

Tatyana S SpiridonovaSergey F SolodovnikovAleksandra A SavinaZoya A SolodovnikovaSergey Yu StefanovichBogdan I LazoryakIliya V KorolkovElena G Khaikina
Published in: Acta crystallographica. Section C, Structural chemistry (2017)
Two new isostructural compounds, namely heptapotassium silver tetrakis(tetraoxomolybdate), K7-xAg1+x(MoO4)4 (0 ≤ x ≤ 0.4), and heptapotassium silver tetrakis(tetraoxotungstate), K7-xAg1+x(WO4)4 (0 ≤ x ≤ 0.4), have been synthesized and found to crystallize in the polar space group P63mc (Z = 2) with the unit-cell dimensions a = 12.4188 (2) and c = 7.4338 (2) Å for K6.68Ag1.32(MoO4)4 (single-crystal data), and a = 12.4912 (5) and c = 7.4526 (3) Å for K7Ag(WO4)4 (Rietveld analysis data). Both structures represent a new structure type, with characteristic [K1(XO4)6] `pinwheels' of K1O6 octahedra and six XO4 tetrahedra (X = Mo, W) connected by common opposite faces into columns along the c axes. The octahedral columns are linked to each other through Ag1O4 tetrahedra along with the K2 and K3/Ag2 polyhedra, forming the polar rods (...Ag1O4-X1O4-empty octahedron-Ag1O4...). Ag1 is located almost at the centre of the largest face of its coordination tetrahedron and seems to have some mobility. The new structure type is related to the Ba6Nd2Al4O15 and CaBaSiO4 types, and to other structures of the α-K2SO4-glaserite family. The differential scanning calorimetry (DSC) and second harmonic generation (SHG) results show that both compounds undergo first-order phase transformations to high-temperature centrosymmetric phases.
Keyphrases
  • quantum dots
  • visible light
  • highly efficient
  • high resolution
  • gold nanoparticles
  • high temperature
  • electronic health record
  • single cell
  • stem cells
  • machine learning
  • artificial intelligence
  • deep learning