Login / Signup

Generation of a Sulfinamide Species from Facile N-O Bond Cleavage of Nitrosobenzene by a Thiolate-Bridged Diiron Complex.

Sunlin XuDawei YangBaomin WangYifeng ChenShengfa YeJingping Qu
Published in: Journal of the American Chemical Society (2021)
The activation of nitrosobenzene promoted by transition-metal complexes has gained considerable interest due to its significance for understanding biological processes and catalytic C-N bond formation processes. Despite intensive studies in the past decades, there are only limited cases where electron-rich metal centers were commonly employed to achieve the N-O or C-N bond cleavage of the coordinated nitrosobenzene. In this regard, it is significant and challenging to construct a suitable functional system for examining its unique reactivity toward reductive activation of nitrosoarene. Herein, we present a {Fe2S2} functional platform that can activate nitrosobenzene via an unprecedented iron-directed thiolate insertion into the N-O bond to selectively generate a well-defined diiron benzenesulfinamide complex. Furthermore, computational studies support a proposal that in this concerted four-electron reduction process of nitrosobenzene the iron center serves as an important electron shuttle. Notably, compared to the intact bridging nitrosoarene ligand, the benzenesulfinamide moiety has priority to convert into aniline in the presence of separate or combined protons and reductants, which may imply the formation of the sulfinamide species accelerates reduction process of nitrosoarene. The reaction pattern presented here represents a novel activation mode of nitrosobenzene realized by a thiolate-bridged diiron complex.
Keyphrases
  • transition metal
  • electron transfer
  • dna binding
  • metal organic framework