Local Insect Damage Reduces Fluctuating Asymmetry in Next-year's Leaves of Downy Birch.
Mikhail V KozlovDmitry E GavrikovVitali ZverevElena L ZverevaPublished in: Insects (2018)
Insect herbivory imposes stress on host plants. This stress may cause an increase in leaf fluctuating asymmetry (FA), which is defined as the magnitude of the random deviations from a symmetrical leaf shape. We tested the hypothesis that differences in leaf FA among individual shoots of downy birch, Betula pubescens, are at least partly explained by local damage caused by insects in the previous year. Unexpectedly, we found that in the year following the damage imposed by miners, leafrollers and defoliators, damaged birch shoots produced leaves with lower FAs compared to shoots from the same tree that had not been damaged by insects. This effect was consistent among the different groups of insects investigated, but intra-species comparisons showed that statistical significance was reached only in shoots that had been damaged by the birch leaf roller, Deporaus betulae. The detected decrease in leaf FA in the year following the damage agrees with the increases in shoot performance and in antiherbivore defence. The present results indicate that within-plant variation in leaf FA may have its origin in previous-year damage by insects, and that FA may influence the current-year's distribution of herbivory.