Login / Signup

ABIOTIC AND DEMOGRAPHIC DRIVERS OF FLEA PARASITISM ON DEER MICE IN A RECOVERING MIXED-CONIFER FOREST A DECADE POSTFIRE.

Colton J PadillaJessica T MartinJames W CainMatthew E Gompper
Published in: The Journal of parasitology (2024)
With the intensity and frequency of wildfires increasing rapidly, the need to study the ecological effects of these wildfires is also growing. An understudied aspect of fire ecology is the effect fires have on parasite-host interactions, including ectoparasites that might be pathogen vectors. Although some studies have examined the impacts of fire on ticks, studies on other ectoparasites, including pathogen vectors, are rare. To help address this knowledge gap, we examined the abiotic and biotic factors that predict the likelihood and extent of parasitism of deer mice (Peromyscus maniculatus) by fleas within a landscape of unburned and recovering burned (>9 yr postfire) mixed conifer forests. We sampled 227 individual deer mice across 27 sites within the Jemez Mountains of northern New Mexico in 2022 and quantified measures of parasitism by fleas (primarily Aetheca wagneri). These sites were distributed in both unburned areas (n = 15) and recovering burned areas (n = 12), with the latter derived from 2 large fires, the Las Conchas fire (2011) and the Thompson Ridge fire (2013). Using these data, we tested for differences in prevalence, mean abundance, and mean intensity of fleas on deer mice, focusing on the predictive importance of host sex and fire history. We also created generalized linear mixed-effects models to investigate the best host and environmental predictors of parasitism by fleas. Approximately a decade postfire, we found minimal evidence to suggest that fire history influenced either the presence or intensity of fleas on deer mice. Rather, at the current forest-regeneration stage, the extent of parasitism by fleas was best predicted by measures of host sex, body condition, and the trapline's ability to accumulate water, as measured through topography. As host body condition increased, the probability of males being parasitized increased, whereas the opposite pattern was seen for females. Male mice also had significantly greater flea loads. Among potential abiotic predictors, the topographic wetness index or compound topographic index (a proxy for soil moisture) was positively related to flea intensity, suggesting larger flea populations in burrows with higher relative humidity. In summary, although fire may potentially have short-term impacts on the likelihood and extent of host parasitism by fleas, in this recovering study system, host characteristics and topographic wetness index are the primary predictors of parasitism by fleas.
Keyphrases