P4HA2 activates mTOR via hydroxylation and targeting P4HA2-mTOR inhibits lung adenocarcinoma cell growth.
Ersuo JinShengjie WangDonglai ChenJia-Ping WangYuanyuan ZengRunfeng SunHong-Tao ZhangPublished in: Oncogene (2024)
Mammalian target of rapamycin (mTOR) kinase functions as a central regulator of cell growth and metabolism, and its complexes mTORC1 and mTORC2 phosphorylate distinct substrates. Dysregulation of mTOR signaling is commonly implicated in human diseases, including cancer. Despite three decades of active research in mTOR, much remains to be determined. Here, we demonstrate that prolyl 4-hydroxylase alpha-2 (P4HA2) binds directly to mTOR and hydroxylates one highly conserved proline 2341 (P2341) within a kinase domain of mTOR, thereby activating mTOR kinase and downstream effector proteins (e.g. S6K and AKT). Moreover, the hydroxylation of P2341 strengthens mTOR stability and allows mTOR to accurately recognize its substrates such as S6K and AKT. The growth of lung adenocarcinoma cells overexpressing mTOR P2341A is significantly reduced when compared with that of cells overexpressing mTOR WT . Interestingly, in vivo cell growth assays show that targeting P4HA2-mTOR significantly suppresses lung adenocarcinoma cell growth. In summary, our study reveals an undiscovered hydroxylation-regulatory mechanism by which P4HA2 directly activates mTOR kinase, providing insights for therapeutically targeting mTOR kinase-driven cancers.