Login / Signup

Estimating cochlear impulse responses using frequency sweeps.

Karolina K CharaziakAlessandro Altoè
Published in: The Journal of the Acoustical Society of America (2023)
Cochlear mechanics tends to be studied using single-location measurements of intracochlear vibrations in response to acoustical stimuli. Such measurements, due to their invasiveness and often the instability of the animal preparation, are difficult to accomplish and, thus, ideally require stimulus paradigms that are time efficient, flexible, and result in high resolution transfer functions. Here, a swept-sine method is adapted for recordings of basilar membrane impulse responses in mice. The frequency of the stimulus was exponentially swept from low to high (upward) or high to low (downward) at varying rates (from slow to fast) and intensities. The cochlear response to the swept-sine was then convolved with the time-reversed stimulus waveform to obtain first and higher order impulse responses. Slow sweeps of either direction produce cochlear first to third order transfer functions equivalent to those measured with pure tones. Fast upward sweeps, on the other hand, generate impulse responses that typically ring longer, as observed in responses obtained using clicks. The ringing of impulse response in mice was of relatively small amplitude and did not affect the magnitude spectra. It is concluded that swept-sine methods offer flexible and time-efficient alternatives to other approaches for recording cochlear impulse responses.
Keyphrases
  • optical coherence tomography
  • hearing loss
  • high resolution
  • metabolic syndrome
  • type diabetes
  • high fat diet induced
  • adipose tissue