Login / Signup

Identifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach.

Martina Lapera SanchoCharles A EllisRobyn L MillerVince D Calhoun
Published in: bioRxiv : the preprint server for biology (2024)
The diagnosis of schizophrenia (SZ) can be challenging due to its diverse symptom presentation. As such, many studies have sought to identify diagnostic biomarkers of SZ using explainable machine learning methods. However, the generalizability of identified biomarkers in many machine learning-based studies is highly questionable given that most studies only analyze explanations from a small number of models. In this study, we present (1) a novel feature interaction-based explainability approach and (2) several new approaches for summarizing multi-model explanations. We implement our approach within the context of electroencephalogram (EEG) spectral power data. We further analyze both training and test set explanations with the goal of extracting generalizable insights from the models. Importantly, our analyses identify effects of SZ upon the α, β, and θ frequency bands, the left hemisphere of the brain, and interhemispheric interactions across a majority of folds. We hope that our analysis will provide helpful insights into SZ and inspire the development of robust approaches for identifying neuropsychiatric disorder biomarkers from explainable machine learning models.
Keyphrases