Dopant-Induced Charge Redistribution on the 3D Sponge-like Hierarchical Structure of Quaternary Metal Phosphides Nanosheet Arrays Derived from Metal-Organic Frameworks for Natural Seawater Splitting.
Thuy Tien Nguyen TranThuy-Kieu TruongJianmin YuLishan PengHongchao MaLinh Ho Thuy NguyenSungkyun ParkYoshiyuki KawazoeThang Bach PhanNhu Hoa Thi TranNam Hoang VuNgoc Quang TranPublished in: ACS applied materials & interfaces (2024)
Dopant-induced electron redistribution on transition metal-based materials has long been considered an emerging new electrocatalyst that is expected to replace noble-metal-based electrocatalysts in natural seawater electrolysis; however, their practical applications remain extremely daunting due to their sluggish kinetics in natural seawater. In this work, we developed a facile strategy to synthesize the 3D sponge-like hierarchical structure of Ru-doped NiCoFeP nanosheet arrays derived from metal-organic frameworks with remarkable hydrogen evolution reaction (HER) performance in natural seawater. Based on experimental results and density functional theory calculations, Ru-doping-induced charge redistribution on the surface of metal active sites has been found, which can significantly enhance the HER activity. As a result, the 3D sponge-like hierarchical structure of Ru-NiCoFeP nanosheet arrays achieves low overpotentials of 52, 149, and 216 mV at 10, 100, and 500 mA cm -2 in freshwater alkaline, respectively. Notably, the electrocatalytic activity of the Ru-NiCoFeP electrocatalyst in simulated alkaline seawater and natural alkaline seawater is nearly the same as that in freshwater alkaline. This electrocatalyst exhibits superior catalytic properties with outstanding stability under a high current density of 85 mA cm -2 for more than 100 h in natural seawater, which outperforms state-of-the-art 20% Pt/C at high current density. Our work provides valuable guidelines for developing a low-cost and high-efficiency electrocatalyst for natural seawater splitting.