Login / Signup

Electrospun gelatin-polyethylenimine blend nanofibrous scaffold for biomedical applications.

Rachita LakraManikantan Syamala KiranPurna Sai Korapatti
Published in: Journal of materials science. Materials in medicine (2019)
In this study, gelatin-polyethylenimine blend nanofibers (GEL/PEI) were fabricated via electrospinning with different ratios (9:1, 6:1, 3:1) to integrate the properties of both the polymers for evaluating its biomedical application. From scanning electron microscopy, the average diameter of blend nanofibers (265 ± 0.074 nm to 340 ± 0.088 nm) was observed to be less than GEL nanofibers (403 ± 0.08 nm). The incorporation of PEI with gelatin resulted in improved thermal stability of nanofibers whereas the Young's modulus was observed to be higher at 9:1 ratio when compared with other ratios. The in vitro studies showed that the GEL/PEI nanofibers with 9:1 ratio promoted better cell adhesion and viability. GEL/PEI nanofibers with 9:1 and 6:1 showed hemolysis within the permissible limits. From the results, it could be interpreted that GEL/PEI nanofibers with 9:1 ratio proved to be a better scaffold thereby making them a potential candidate for tissue engineering applications.
Keyphrases
  • tissue engineering
  • hyaluronic acid
  • electron microscopy
  • wound healing
  • photodynamic therapy
  • human health