Login / Signup

Demonstration of multi-hit and multi-mass capability of 3D imaging in a conventional velocity map imaging experiment.

Chaya WeeraratnaChandika AmarasingheSuk Kyoung LeeWen LiArthur G Suits
Published in: The Journal of chemical physics (2018)
Coincidence and three-dimensional (3D) imaging offer unique capability in photodissociation and scattering experiments, and a variety of methods have been developed. The basic concept behind all these approaches is to register both the position (x, y) at which the particle hits the detector and the arrival time (t). A novel advance to the time and position sensitive detection was introduced recently by Li and co-workers [Rev. Sci. Instrum. 85(12), 123303 (2014)]. This method utilizes a high-speed digitizer and a computer algorithm along with the camera and detector usually employed in a conventional velocity map imaging apparatus. Due to the normal intensity variations of the ion spots, a correlation can be made between ion intensity recorded by the camera and peak intensity in the digitizer. This makes it possible to associate each ion spot's position with its respective arrival time, thereby constructing a 3D distribution. The technique was primarily introduced for ultrafast ion and electron imaging experiments at high repetition rate with single or few events per image frame. We have recently succeeded in adapting this approach at low repetition rate. Modifications were done to the initial setup to enhance the acquisition efficiency to obtain and correlate multiple hits per laser shot rather than single-hit events. The results are demonstrated in two experiments, dimethyl amine dissociative ionization at 205 nm and carbonyl sulfide photodissociation at 217 nm, with up to 27 events correlated in a single frame. Temporal and spatial slicing capabilities were achieved with good resolution, giving the photofragment velocity and angular distribution for multiple masses simultaneously.
Keyphrases