Login / Signup

Ferri-hydrite: A Novel Electron-Selective Contact Layer for InP Photovoltaic and Photoelectrochemical Cells.

Bikesh GuptaDoudou ZhangHongjun ChenChennupati JagadishHark Hoe TanSiva Krishna Karuturi
Published in: ACS applied materials & interfaces (2023)
Solar energy conversion devices with charge-selective contacts are attracting significant research interest as a cost-effective alternative to homojunction counterparts. This study presents a novel approach for fabricating high-performance solar cells based on InP heterojunctions using a solution-processed ferri-hydrite (Fh) electron-selective contact (ESC). The champion cell efficiency of 16.6% is achieved, which is a significant improvement over those from previous studies using other solution-processed ESC materials. X-ray photoelectron spectroscopy measurements showed that the low conduction band offset at the Fh-InP interface facilitated selective transport of photogenerated electrons from InP. Moreover, the Fh electron-selective contact layer provided an excellent photoelectrochemical half-cell water reduction efficiency of 8.4%. The Fh layer not only selectively extracts photogenerated electrons from InP but also simultaneously serves as a surface protection layer, improving the cell's long-term stability. These results demonstrate the potential of Fh as a low-cost and easily fabricated material for use in high-efficiency photovoltaic and photoelectrochemical devices. Our findings pave the way for further improvements in the efficiency of InP heterojunction solar cells by addressing the losses incurred in the cells.
Keyphrases