Login / Signup

Fall Armyworm, Spodoptera frugiperda Infestations in East Africa: Assessment of Damage and Parasitism.

Birhanu SisayJosephine SimiyuEsayas MendesilPaddy LikhayoGashawbeza AyalewSamira MohamedSubramanian SevganTadele Tefera
Published in: Insects (2019)
The fall armyworm (FAW), Spodoptera frugiperda, threatens maize production in Africa. A survey was conducted to determine the distribution of FAW and its natural enemies and damage severity in Ethiopia, Kenya and Tanzania in 2017 and 2018. A total of 287 smallholder maize farms (holding smaller than 2 hectares of land) were randomly selected and surveyed. FAW is widely distributed in the three countries and the percent of infested maize fields ranged from 33% to 100% in Ethiopia, 93% to 100% in Tanzania and 100% in Kenya in 2017, whereas they ranged from 80% to 100% and 82.2% to 100% in Ethiopia and Kenya, respectively, in 2018. The percent of FAW infestation of plants in the surveyed fields ranged from 5% to 100%. In 2017, the leaf damage score of the average of the fields ranged from 1.8 to 7 (9 = highest level of damage), while 2018, it ranged from 1.9 to 6.8. In 2017, five different species of parasitoids were recovered from FAW eggs and larvae. Cotesia icipe (Hymenoptera: Braconidae) was the main parasitoid recorded in Ethiopia, with a percent parasitism rate of 37.6%. Chelonus curvimaculatus Cameron (Hymenoptera: Braconidae) was the only egg-larval parasitoid recorded in Kenya and had a 4.8% parasitism rate. In 2018, six species of egg and larval parasitoids were recovered with C. icipe being the dominant larval parasitoid, with percentage parasitism ranging from 16% to 42% in the three surveyed countries. In Kenya, Telenomus remus (Hymenoptera: Scelionidae) was the dominant egg parasitoid, causing up to 69.3% egg parasitism as compared to only 4% by C. curvimaculatus. Although FAW has rapidly spread throughout these three countries, we were encouraged to see a reasonable level of biological control in place. Augmentative biological control can be implemented to suppress FAW in East Africa.
Keyphrases
  • oxidative stress
  • aedes aegypti
  • drosophila melanogaster
  • climate change
  • neural network
  • water quality