Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation.
Jean-Frédéric DubernAndrew L HookAlessandro M CarabelliChien-Yi ChangChristopher A Lewis-LloydJeni C LuckettLaurence BurroughsAdam A DundasDavid J HumesDerek J IrvineMorgan R AlexanderPaul WilliamsPublished in: Science advances (2023)
Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming, encrustation, and host protein deposition, which are major challenges associated with preventing CAUTIs. After screening ~400 acrylate polymers, poly( tert -butyl cyclohexyl acrylate) was selected for its biofilm- and encrustation-resistant properties. When combined with the swarming inhibitory poly(2-hydroxy-3-phenoxypropyl acrylate), the copolymer retained the bioinstructive properties of the respective homopolymers when challenged with Proteus mirabilis , Pseudomonas aeruginosa , Staphylococcus aureus , and Escherichia coli . Urinary tract catheterization causes the release of host proteins that are exploited by pathogens to colonize catheters. After preconditioning the copolymer with urine collected from patients before and after catheterization, reduced host fibrinogen deposition was observed, and resistance to diverse uropathogens was maintained. These data highlight the potential of the copolymer as a urinary catheter coating for preventing CAUTIs.
Keyphrases
- biofilm formation
- pseudomonas aeruginosa
- staphylococcus aureus
- escherichia coli
- urinary tract infection
- candida albicans
- cystic fibrosis
- ultrasound guided
- urinary tract
- small molecule
- end stage renal disease
- drug release
- acinetobacter baumannii
- ejection fraction
- high throughput
- newly diagnosed
- methicillin resistant staphylococcus aureus
- chronic kidney disease
- patient reported outcomes
- prognostic factors
- peritoneal dialysis
- electronic health record
- multidrug resistant
- binding protein
- big data
- risk assessment
- drug resistant