Login / Signup

Intrinsic Defects and the Inducing Conduction Mechanism of Langasite-Type High-Temperature Piezoelectric Crystals.

Linyu BaiDongjie LiuXian ZhaoFapeng YuYanlu Li
Published in: ACS applied materials & interfaces (2023)
Increasing the crystal resistivity is critically important for enhancing the signal-to-noise ratio and improving the sensing capability of high-temperature piezoelectric sensors based on langasite-type crystals. The resistivity of structural ordered langasite-type crystals is much higher compared to that of the disordered crystals. Here, we selected structural ordered Ca 3 TaGa 3 Si 2 O 14 (CTGS) and disordered La 3 Ga 5 SiO 14 (LGS) as representatives to investigate the microscopic conduction mechanism and further reveal the origin of the different resistivities of the ordered and disordered langasite-type crystals at elevated temperatures. By combining first-principles calculations and experimental investigations, we found that the different conductivity behaviors of the ordered and disordered crystals originate from different types of point defects formed in the crystal and their different contributions to the conductivity. For the disordered LGS crystal, the oxygen vacancies are apt to be formed at high temperatures, promoting the transition of valence electrons and yielding high conductivity. For the ordered CTGS crystal, the dominant Ta Ga antisite defects can introduce an electron-hole recombination center in the electronic band gap, significantly shortening the carrier lifetime and thus reducing the conductivity. This provides effective guidance to improve the resistivity performance of langasite-type crystals at high temperatures by optimizing the experimental conditions, such as oxygen atmosphere treatment, antisite defect modification, etc.
Keyphrases
  • room temperature
  • high temperature
  • pet ct
  • gene expression
  • dna damage
  • single cell
  • molecular dynamics
  • molecular dynamics simulations
  • dna repair