Improving Broadband White-Light Emission Performances of 2D Perovskites by Subtly Regulating Organic Cations.
Chang-Qing JingJuan WangHui-Fang ZhaoWen-Xin ChuYun YuanZhi WangMeng-Fei HanTe XuJian-Qiang ZhaoXiao-Wu LeiPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
Recently, 2D organic-inorganic hybrid lead halide perovskites have attracted intensive attention in solid-state luminescence fields such as single-component white-light emitters, and rational optimization of the photoluminescence (PL) performance through accurate structural-design strategies is still significant. Herein, by carefully choosing homologous aliphatic amines as templates, isotypical perovskites [DMEDA]PbCl4 (1, DMEDA=N,N-dimethylethylenediamine) and [DMPDA]PbCl4 (2, DMPDA=N,N-dimethyl-1,3-diaminopropane) having tunable and stable broadband bluish white emission properties were rationally designed. The subtle regulation of organic cations leads to a higher degree of distortion of the 2D [PbCl4 ]2- layers and enhanced photoluminescence quantum efficiencies (<1 % for 1 and 4.9 % for 2). The broadband light emissions could be ascribed to self-trapped excitons on the basis of structural characterization, time-resolved PL, temperature-dependent PL emission, and theoretical calculations. This work gives a new guidance to rationally optimize the PL properties of low-dimensional halide perovskites and affords a platform to probe the structure-property relationship.