Login / Signup

Effects of food availability on metabolism, behaviour, growth and their relationships in a triploid carp.

Sheng LiuShi-Jian Fu
Published in: The Journal of experimental biology (2017)
Metabolism, behaviour and growth are highly flexible in fish species, and inter-individual variation in these traits is evolutionarily and ecologically significant. It has long been suggested that these traits co-vary, although their relationships are debated. In the present study, we investigated whether metabolism, behaviour, growth and the potential relationships among them vary with food availability in sterile triploid carp. In this experimental animal model, we investigated the standard metabolic rate (SMR), growth performance and personality traits (i.e. activity, exploration and boldness) of juvenile individuals before and after 25 days of rearing in which fish were fed either once or twice a day to satiation. Inter-individual differences in SMR in each group showed high repeatability across the experimental period, and twice-fed fish showed higher SMRs than once-fed fish after 25 days of rearing. Compared with the once-fed group, the twice-fed group showed higher feeding rates (FRs) and lower feeding efficiencies (FEs) but similar specific growth rates (SGRs). None of the personality traits was affected by food availability. Furthermore, both boldness and exploration were highly repeatable throughout the experiment in the group fed twice a day, whereas only exploration showed repeatability in the group fed once a day. In the once-fed group, SMR and the personality traits were positively correlated with FR and negatively correlated with FE and/or SGR; however, these relationships did not exist in the twice-fed group due to the surplus of food. These results suggest that food availability significantly affects physiological, behavioural and ecological processes in these fish by altering the trade-off between metabolism and growth.
Keyphrases
  • climate change
  • genome wide
  • gene expression
  • dna methylation
  • mass spectrometry
  • genetic diversity
  • high speed