Login / Signup

Dynamics of Monolayer Growth in Vapor-Liquid-Solid GaAs Nanowires Based on Surface Energy Minimization.

Hadi HijaziVladimir G Dubrovskii
Published in: Nanomaterials (Basel, Switzerland) (2021)
The vapor-liquid-solid growth of III-V nanowires proceeds via the mononuclear regime, where only one island nucleates in each nanowire monolayer. The expansion of the monolayer is governed by the surface energetics depending on the monolayer size. Here, we study theoretically the role of surface energy in determining the monolayer morphology at a given coverage. The optimal monolayer configuration is obtained by minimizing the surface energy at different coverages for a set of energetic constants relevant for GaAs nanowires. In contrast to what has been assumed so far in the growth modeling of III-V nanowires, we find that the monolayer expansion may not be a continuous process. Rather, some portions of the already formed monolayer may dissolve on one of its sides, with simultaneous growth proceeding on the other side. These results are important for fundamental understanding of vapor-liquid-solid growth at the atomic level and have potential impacts on the statistics within the nanowire ensembles, crystal phase, and doping properties of III-V nanowires.
Keyphrases
  • room temperature
  • reduced graphene oxide
  • ionic liquid
  • healthcare
  • magnetic resonance
  • computed tomography
  • climate change
  • peripheral blood
  • contrast enhanced