A molecular dynamics study on using of naturally occurring polymers for structural stabilization of erythropoietin at high temperature.
Sanaz KianipourMohabbat AnsariNegin FarhadianSajad MoradiMohsen ShahlaeiPublished in: Journal of biomolecular structure & dynamics (2021)
Today the nano drug delivery systems are among the hot topics in drug design and pharmacy studies. Extensive researches are conducted worldwide for obtaining more effective therapeutics and screen the best drug carrier in-vivo and in-vitro. Considering the high cost of such experiments and the ethical issues linked with in-vivo studies, the in-silico analysis provides the time and cost-effective opportunity to evaluation of physiochemical properties and the interactions between drugs and their carriers. In this study using molecular dynamics (MD) simulation, five commonly used biodegradable biopolymers in pharmaceutical formulations including Chitosan, Alginate, Cyclodextrin, Hyaluronic Acid, and Pectin were investigated as proper carriers for the erythropoietin (EPO) in heat stress. The EPO was simulated in different temperatures of 298 and 343 K and the ability of polymers for temperature stabilization of the protein was evaluated comparatively. Overall, the results obtained in this study suggest that the pectin polysaccharide is the preferable carrier than others in term of protein stability in high temperatures and using for the delivery of erythropoietin.Communicated by Ramaswamy H. Sarma.