Login / Signup

Controlling the Thermoelectric Properties of Nb-Doped TiO2 Ceramics through Engineering Defect Structures.

Xiaodong LiuDespoina M KepaptsoglouZhaohe GaoAndrew Guy ThomasKrishnendu MajiEmmanuel GuilmeauFeridoon AzoughQuentin Mathieu RamasseRobert Freer
Published in: ACS applied materials & interfaces (2021)
Donor-doped TiO2 ceramics are promising high-temperature oxide thermoelectrics. Highly dense (1 - x)TiO2-xNb2O5 (0.005 ≤ x ≤ 0.06) ceramics were prepared by a single-step, mixed-oxide route under reducing conditions. The microstructures contained polygonal-shaped grains with uniform grain size distributions. Subgrain structures were formed in samples with low Nb contents by the interlacing of rutile and higher-order Magnéli phases, reflecting the high density of shear planes and oxygen vacancies. Samples prepared with a higher Nb content showed no subgrain structures but high densities of planar defects and lower concentrations of oxygen vacancies. Through optimizing the concentration of point defects and line defects, the carrier concentration and electrical conductivity were enhanced, yielding a much improved power factor of 5.3 × 10-4 W m-1 K-2 at 823 K; lattice thermal conductivity was significantly reduced by enhanced phonon scattering. A low, temperature-stable thermal conductivity of 2.6 W m-1 K-1 was achieved, leading to a ZT value of 0.17 at 873 K for compositions with x = 0.06, the highest ZT value reported for single Nb-doped TiO2 ceramics without the use of spark plasma sintering (SPS). We demonstrate the control of the thermoelectric properties of Nb-doped TiO2 ceramics through the development of balanced defect structures, which could guide the development of future oxide thermoelectric materials.
Keyphrases
  • quantum dots
  • visible light
  • high density
  • high resolution
  • high temperature
  • highly efficient
  • metal organic framework