Login / Signup

Active cooling temperature required to achieve therapeutic hypothermia correlates with short-term outcome in neonatal hypoxic-ischaemic encephalopathy.

Ulrike MietzschRupa RadhakrishnanFrances A BoyleChristopher M TraudtThomas Ragnar Wood
Published in: The Journal of physiology (2020)
Neonatal hypoxic-ischaemic encephalopathy (HIE) is a leading cause of death and disability in children. Therapeutic hypothermia (TH) at 33.5°C for 72 h is the only therapy to date shown to improve outcome in moderate to severe HIE; however, assessment of severity and prediction of outcome remains challenging. Infants with HIE display significant physiological perturbations, including spontaneous hypothermia. We hypothesized that neonates with more severe brain injury on magnetic resonance imaging (MRI) would exhibit a greater degree of spontaneous hypothermia, and thus require less active cooling to attain TH. Twenty-eight neonates with moderate or severe HIE treated with TH were included in the present study. MRI images obtained on day of life 4-7 were scored according to standardized injury criteria. Unfavourable outcome was defined as death or significant grey matter injury on MRI according to a previously validated scoring system. A significantly higher cooling device output temperature was seen in infants with an unfavourable outcome. All neonates who required the mattress to provide a temperature ≥32°C to maintain their core body temperature at 33.5°C had a high likelihood of unfavourable outcome (likelihood ratio = 14.4). By contrast, infants who never required a device output temperature ≥32°C had a low likelihood of an unfavourable outcome (likelihood ratio = 0.07, P < 0.001). Infants with significant grey matter injury on MRI require less active cooling to maintain target temperature during TH. The cooling device output temperature has the potential to be an easily accessible physiological biomarker and predictor of injury and mortality in neonates with moderate or severe HIE.
Keyphrases