Login / Signup

An ultrahigh-performance liquid chromatography-tandem mass spectrometry method for quantification of methotrexate and 7-hydroxy-methotrexate and application for therapeutic drug monitoring in patients with central nervous system lymphoma.

Jiping HuoBo ZhangDongjie ZhangBin ZhuZhigang ZhaoShenghui Mei
Published in: Biomedical chromatography : BMC (2023)
A method using ultrahigh-performance liquid chromatography-tandem mass spectrometry was developed, validated, and applied to simultaneously determine plasma methotrexate (MTX) and 7-hydroxy-methotrexate (7-OH-MTX) in 117 patients with central nervous system (CNS) lymphoma. The ion transitions utilized were m/z 455.2 > 308.2 for MTX and m/z 471.2 > 324.1 for 7-OH-MTX. Samples were prepared through protein precipitation using methanol. Chromatographic separation was achieved within 3.0 min on a CMS9030 column (Ruixi, 2.1 × 50 mm, 3 μm) through a gradient elution of methanol and a 10% ammonium acetate solution at a flow rate of 0.4 mL/min. The method demonstrated linearity in the concentration range of 0.05-10 μM for MTX and 0.25-50 μM for 7-OH-MTX. The intra- and inter-day inaccuracy ranged from -7.38% to 7.83%, and the imprecision was less than 6.00% for both analytes. The recovery and matrix effect normalized by the internal standard (MTX-D 3 ) remained consistent. Both analytes remained stable under nine different storage conditions. In patients with CNS lymphoma, MTX levels at 12 h and 7-OH-MTX levels at 12, 36, and 60 h after dosing in individuals with impaired renal function were significantly higher compared with those with normal renal function. 7-OH-MTX could potentially serve as a superior indicator for nephrotoxicity compared with MTX.
Keyphrases
  • liquid chromatography tandem mass spectrometry
  • simultaneous determination
  • high dose
  • ms ms
  • diffuse large b cell lymphoma
  • solid phase extraction
  • liquid chromatography
  • protein protein
  • binding protein