A novel n-type CdS nanorods/p-type LaFeO 3 heterojunction nanocomposite with enhanced visible-light photocatalytic performance.
Akram-Alsadat HoseiniSaeed FarhadiAbedin ZabardastiFirouzeh SiadatnasabPublished in: RSC advances (2019)
In this work, a novel n-type CdS nanorods/p-type LaFeO 3 (CdS NRs/LFO) nanocomposite was prepared, for the first time, via a facile solvothermal method. The as-prepared n-CdS NRs/p-LFO nanocomposite was characterized by using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), UV-visible diffuse reflection spectroscopy (DRS), vibrating sample magnetometry (VSM), photoluminescence (PL) spectroscopy, and Brunauer-Emmett-Teller (BET) surface area analysis. All data revealed the attachment of the LFO nanoparticle on the surface of CdS NRs. This novel nanocomposite was applied as a novel visible light photocatalyst for the degradation of methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes under visible-light irradiation. Under optimized conditions, the degradation efficiency was 97.5% for MB, 80% for RhB and 85% for MO in the presence of H 2 O 2 and over CdS NRs/LFO nanocomposite. The photocatalytic activity of CdS NRs/LFO was almost 16 and 8 times as high as those of the pristine CdS NRs and pure LFO, respectively. The photocatalytic activity was enhanced mainly due to the high efficiency in separation of electron-hole pairs induced by the remarkable synergistic effects of CdS and LFO semiconductors. After the photocatalytic reaction, the nanocomposite can be easily separated from the reaction solution and reused several times without loss of its photocatalytic activity. Trapping experiments indicated that ·OH radicals were the main reactive species for dye degradation in the present photocatalytic system. On the basis of the experimental results and estimated energy band positions, the mechanism for the enhanced photocatalytic activity was proposed.
Keyphrases
- visible light
- electron microscopy
- high resolution
- quantum dots
- single molecule
- high efficiency
- reduced graphene oxide
- machine learning
- magnetic resonance imaging
- drug delivery
- gold nanoparticles
- magnetic resonance
- solid state
- radiation therapy
- single cell
- mass spectrometry
- high grade
- ionic liquid
- low grade
- solid phase extraction
- fluorescent probe