Login / Signup

Hand Gesture Recognition Using FSK Radar Sensors.

Kimoon YangMinji KimYunho JungSeongjoo Lee
Published in: Sensors (Basel, Switzerland) (2024)
Hand gesture recognition, which is one of the fields of human-computer interaction (HCI) research, extracts the user's pattern using sensors. Radio detection and ranging (RADAR) sensors are robust under severe environments and convenient to use for hand gestures. The existing studies mostly adopted continuous-wave (CW) radar, which only shows a good performance at a fixed distance, which is due to its limitation of not seeing the distance. This paper proposes a hand gesture recognition system that utilizes frequency-shift keying (FSK) radar, allowing for a recognition method that can work at the various distances between a radar sensor and a user. The proposed system adopts a convolutional neural network (CNN) model for the recognition. From the experimental results, the proposed recognition system covers the range from 30 cm to 180 cm and shows an accuracy of 93.67% over the entire range.
Keyphrases
  • convolutional neural network
  • deep learning
  • endothelial cells
  • low cost
  • machine learning
  • induced pluripotent stem cells