Login / Signup

Amphiphilic Marine Antifouling Coatings Based on a Hydrophilic Polyvinylpyrrolidone and Hydrophobic Fluorine-Silicon-Containing Block Copolymer.

Hongshuang GuoPengguang ChenShu TianYiming MaQingsi LiChiyu WenJing YangLei Zhang
Published in: Langmuir : the ACS journal of surfaces and colloids (2020)
The development of environmentally friendly and highly efficient antifouling coatings is vastly desirable in the marine industry. Herein, we prepared a novel amphiphilic block copolymer that combined hydrophilic polyvinylpyrrolidone (PVP) with hydrophobic poly(1-(1H,1H,2H,2H-perfluorodecyloxy)-3-(3,6,9-trioxadecyloxy)-propan-2-yl acrylate) (PFA) and polydimethylsiloxane (PDMS). The amphiphilic copolymer (PVP-PFA-PDMS) was blended into a cross-linked PDMS matrix to form a set of controlled surface composition and surface-renewal coatings with efficient antifouling and fouling-release properties. These coatings incorporated the biofouling settlement resistance ability attributed to the hydrophilic PVP segments and the reduced adhesion strength attributed to the low surface energy of fluorine-silicon-containing segments. As expected, the coatings showed an excellent antifouling performance against bacteria and marine unicellular Navicula parva diatoms (98.1 and 98.5% of reduction, respectively) and fouling-release performance against pseudobarnacle adhesion (84.3% of reduction) compared to the pristine PDMS coating. Moreover, a higher-content PVP-based coatings presented higher ability to resist biofouling adhesion. The nontoxic antifouling coating developed in this paper hold the potential to be applied in a variety of marine industrial facilities.
Keyphrases