Login / Signup

Gene expressing analysis indicates the role of Pyrogallol as a novel antibiofilm and antivirulence agent against Acinetobacter baumannii.

Gurusamy AbiramiRavindran DurgadeviPalanivel VelmuruganArumugam Veera Ravi
Published in: Archives of microbiology (2020)
Acinetobacter baumannii has emerged worldwide as a leading cause of hospital-acquired infections. Although A. baumannii was initially regarded to as a low-grade pathogen, evidence has been accumulated suggesting that A. baumannii infections are associated with increased mortality in critically ill patients. Here, we describe the efficacy of pyrogallol, a polyphenolic organic compound found in the galls and barks of various trees, which shows anti-biofilm and anti-virulence potential against A. baumannii. Pyrogallol shows concentration-based biofilm inhibition, as evidenced through light and confocal laser scanning microscopic analysis. The other virulence factors are protease, swarming motility, and extracellular polymeric substances that are also inhibited by pyrogallol. Through real-time PCR, it was found that pyrogallol downregulates expression of the biofilm and virulence-related ompA, bap, csuA/B, katE, pgaA, and pgaC genes. Furthermore, pyrogallol moderately inhibited the mature biofilms of A. baumannii in a concentration-dependent manner (5, 10, and 20 µg/ml). The present study reports that the anti-biofilm and anti-virulence potential of pyrogallol disrupts the biofilm formation, adherence of cells, and cell-to-cell signaling mechanism of A. baumannii. Thus, pyrogallol is a promising therapeutic agent for A. baumannii-related infections.
Keyphrases