Login / Signup

Mitochondrial genetic diversity of Thrips tabaci (Thysanoptera: Thripidae) in onion growing regions of the United States.

Romana IftikharAmalendu GhoshHanu R Pappu
Published in: Journal of economic entomology (2023)
Onion thrips (Thrips tabaci Lindeman, Thysanoptera: Thripidae) causes severe damage to many horticultural and agronomic crops worldwide. It also acts as a vector of several plant viruses. T. tabaci is a key pest of Allium cepa in the United States. However, there is limited information available on the genetic variation within and between T. tabaci populations in the United States and its key evolutionary parameters. In the current study, 83 T. tabaci specimens were collected from A. cepa from 15 different locations comprising four states of the United States. A total of 92 mtCOI gene sequences of T. tabaci from A. cepa were analyzed to understand the genetic diversity and structure of T. tabaci collected from onion host. Seven distinct haplotypes of T. tabaci infesting A. cepa were identified from the current collection, while nine T. tabaci sequences retrieved from GenBank comprised 5 haplotypes. Overall, 15 haplotypes of T. tabaci infesting A. cepa were identified in the world that includes the ten haplotypes in the United States. In the phylogenetic analysis, all the populations collected during the study clustered with thelytokous lineage, while T. tabaci sequences retrieved from GenBank corresponded to leek-associated arrhenotokous lineage. The highest genetic variation was found in Elba and Malheur populations with 3 haplotypes identified in each. The results suggest that haplotypes 1 and 7 are more frequently prevailing haplotypes in the north-western United States, with haplotype 1 being the predominant all over the country. The eastern United States appears to have a more diverse group of haplotypes. The populations from Hungary constituted distinct haplotypes and a haplotype from Kingston linked it with the predominant haplotype.
Keyphrases
  • genetic diversity
  • oxidative stress
  • healthcare
  • genome wide analysis