Porous MXene Frameworks Support Pyrite Nanodots toward High-Rate Pseudocapacitive Li/Na-Ion Storage.
Cheng-Feng DuQinghua LiangYun ZhengYubo LuoHui MaoQingyu YanPublished in: ACS applied materials & interfaces (2018)
Presented are the novel Ti3C2 T x MXene-based nanohybrid that decorated by pyrite nanodots on its surface (denoted as FeS2@MXene). The nanohybrid was obtained by the one-step sulfurization of self-assembled iron hydroxide@MXene precursor. When used for Li/Na-ion storage, the FeS2@MXene nanohybrid present excellent rate capabilities. Particularly, for Li-ion storage, an elevated reversible specific capacity of 762 mAh g-1 at 10 A g-1 after 1000 cycles was achieved. And for Na-ion storage, the FeS2@MXene nanohybrid also delivering a reversible specific capacity of 563 mAh g-1 after 100 cycles at a current density of 0.1 A g-1.