Fabrication of ZnO dual electron transport layer via atomic layer deposition for highly stable and efficient CsPbBr 3 perovskite nanocrystals light-emitting diodes.
Binze ZhouLe QinPengfei WangZhuo ChenJianfeng ZangJianbing ZhangYanwei WenRong ChenPublished in: Nanotechnology (2022)
Electron transport layers (ETLs) are important components of high-performance all-inorganic perovskite nanocrystals light-emitting diodes (PNCs-LED). Herein, atomic layer deposition (ALD) of inorganic ZnO layer is combined to the organic 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) to form dual ETLs to enhance both the efficiency and stability of PNCs-LED simultaneously. Optimization of ZnO thickness suggested that 10 cycles ALD yields the best performance of the devices. The external quantum efficiency of the device reaches to 7.21% with a low turn-on voltage (2.4 V). Impressively, the dual ETL PNCs-LED realizes maximum T 50 lifetime of 761 h at the initial luminance of 100 nit, which is one of the top lifetimes among PNCs-LEDs up to now. The improved performance of dual ETL PNCs-LED is mainly due to the improved charge transport balance with favorable energy level matching. These findings present a promising strategy to modify the function layer via ALD to achieve both highly efficient and stable PNCs-LED.