Login / Signup

Effect of bottom bumpiness of vibrated closed container on granular dissipation behavior.

Wenzhe LiKai ZhangFugui SunMeng Chen
Published in: The European physical journal. E, Soft matter (2024)
The dissipation behavior of granular balls inside quasi-two-dimensional closed containers with different levels of bottom bumpiness under vibration is examined in this article using the discrete element method. The quasi-two-dimensional closed granular system used in this paper has dimensions of L x × L y × L z = 60 mm × 5 mm × 120 mm , and the diameters of the 279 filled granular balls are 4 mm. First, the dynamic behavior and damping effects of granular balls within a flat-bottomed closed container are explored across the range of relevant excitation parameters, identifying four high damping granular phases. Second, this study investigated the impact of the container's bottom surface bumpiness, convex height, and number of bumps on the dissipative behavior of internal granular balls. The findings reveal that a single 2 mm bump on the container's bottom surface maximally enhances the damping effect on the granular balls. Finally, by comparing the optimal damping behavior of granular balls inside a flat-bottomed container with that of a container featuring a single 2 mm bump at the bottom, this study revealed how the protruding bottom surface enhances the damping effect on the granular balls inside the container. This provides theoretical support for optimizing the performance of granular dampers in engineering practice by controlling the morphology of the cavity bottom surface.
Keyphrases
  • primary care
  • single cell
  • high frequency
  • single molecule