Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite.
Naotaka TomiokaMasaaki MiyaharaMotoo ItoPublished in: Science advances (2016)
MgSiO3 tetragonal garnet, which is the last of the missing phases of experimentally predicted high-pressure polymorphs of pyroxene, has been discovered in a shocked meteorite. The garnet is formed from low-Ca pyroxene in the host rock through a solid-state transformation at 17 to 20 GPa and 1900° to 2000°C. On the basis of the degree of cation ordering in its crystal structure, which can be deduced from electron diffraction intensities, the cooling rate of the shock-induced melt veins from ~2000°C was estimated to be higher than 10(3)°C/s. This cooling rate sets the upper bound for the shock-temperature increase in the bulk meteorite at ~900°C.