Login / Signup

Role of the voltage window on the capacity retention of P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 cathode material for rechargeable sodium-ion batteries.

Maider ZarrabeitiaFrancesco NobiliOier LakuntzaJavier CarrascoTeófilo RojoMontse Casas-CabanasMiguel Ángel Muñoz-Márquez
Published in: Communications chemistry (2022)
P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 layered oxide is a promising high energy density cathode material for sodium-ion batteries. However, one of its drawbacks is the poor long-term stability in the operating voltage window of 1.5-4.25 V vs Na + /Na that prevents its commercialization. In this work, additional light is shed on the origin of capacity fading, which has been analyzed using a combination of experimental techniques and theoretical methods. Electrochemical impedance spectroscopy has been performed on P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 half-cells operating in two different working voltage windows, one allowing and one preventing the high voltage phase transition occurring in P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 above 4.0 V vs Na + /Na; so as to unveil the transport properties at different states of charge and correlate them with the existing phases in P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 . Supporting X-ray photoelectron spectroscopy experiments to elucidate the surface properties along with theoretical calculations have concluded that the formed electrode-electrolyte interphase is very thin and stable, mainly composed by inorganic species, and reveal that the structural phase transition at high voltage from P2- to "Z"/OP4-oxygen stacking is associated with a drastic increased in the bulk electronic resistance of P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 electrodes which is one of the causes of the observed capacity fading.
Keyphrases