Multimodal Characterization of Neural Networks Using Highly Transparent Electrode Arrays.
Mary Jocelyn DonahueAttila KaszasGergely F TuriBalázs RózsaAndrea SléziaIvo VanzettaGergely KatonaChristophe BernardGeorge G MalliarasAdam WilliamsonPublished in: eNeuro (2018)
Transparent and flexible materials are attractive for a wide range of emerging bioelectronic applications. These include neural interfacing devices for both recording and stimulation, where low electrochemical electrode impedance is valuable. Here the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is used to fabricate electrodes that are small enough to allow unencumbered optical access for imaging a large cell population with two-photon (2P) microscopy, yet provide low impedance for simultaneous high quality recordings of neural activity in vivo. To demonstrate this, pathophysiological activity was induced in the mouse cortex using 4-aminopyridine (4AP), and the resulting electrical activity was detected with the PEDOT:PSS-based probe while imaging calcium activity directly below the probe area. The induced calcium activity of the neuronal network as measured by the fluorescence change in the cells correlated well with the electrophysiological recordings from the cortical grid of PEDOT:PSS microelectrodes. Our approach provides a valuable vehicle for complementing classical high temporal resolution electrophysiological analysis with optical imaging.
Keyphrases
- high resolution
- neural network
- single molecule
- living cells
- magnetic resonance imaging
- gold nanoparticles
- high speed
- quantum dots
- transcription factor
- high throughput
- oxidative stress
- computed tomography
- diabetic rats
- bone marrow
- chronic pain
- photodynamic therapy
- cell proliferation
- functional connectivity
- brain injury
- blood brain barrier
- cell therapy
- data analysis
- reduced graphene oxide
- network analysis