Amine-Terminated Phenanthroline Diimides as Aqueous Masking Agents for Am(III)/Eu(III) Separation: An Alternative Ligand Design Strategy for Water-Soluble Lanthanide/Actinide Chelating Ligands.
Hong CaoYu KangBin LiYaoyang LiuMingjie BaoHaoyu LiYuan ZhengLudi WangChaoqun WengXiaoyan TangLi WangChao XuPublished in: Inorganic chemistry (2024)
Selective actinide coordination (from lanthanides) is critical for both nuclear waste management and sustainable development of nuclear power. Hydrophilic ligands used as masking agents to withhold actinides in the aqueous phase are currently highly pursued, while synthetic accessibility, water solubility, acid resistance, and extraction capability are the remaining problems. Most reported hydrophilic ligands are only effective at low acidity. We recently proved that the phenanthroline diimide skeleton was an efficient building block for the construction of highly efficient acid-resistant hydrophilic lanthanide/actinide separation agents, while the limited water solubility hindered the loading capability of the ligand. Herein, amine was introduced as the terminal solubilizing group onto the phenanthroline diimide backbone, which after protonation in acid showed high water solubility. The positively charged terminal amines enhanced the ligand water solubility to a large extent, which, on the other side, was believed to be detrimental for the coordination and complexation of the metal cations. We showed that by delicately adjusting the alkyl chain spacing, this intuitive disadvantage could be relieved and superior extraction performances could be achieved. This work holds significance for both hydrophilic lanthanide/actinide separation ligand design and, concurrently, offers insights into the development of water-soluble lanthanide/actinide complexes for biomedical and bioimaging applications.