Comparative Study of Two Oxidizing Agents, Chloramine T and Iodo-Gen®, for the Radiolabeling of β-CIT with Iodine-131: Relevance for Parkinson's Disease.
Ana Claudia R DuranteDanielle V SobralAna Cláudia Camargo MirandaLuciana MalavoltaLeonardo Lima FuscaldiMarycel Rosa Felisa Figols de BarbozaPublished in: Pharmaceuticals (Basel, Switzerland) (2019)
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to alteration of the integrity of dopaminergic transporters (DATs). In recent years, some radiopharmaceuticals have been used in the clinic to evaluate the integrity of DATs. These include tropane derivatives such as radiolabeled β-CIT and FP-CIT with iodine-123 (123I), and TRODAT-1 with metastable technetium-99 (99mTc). Radiolabeling of β-CIT with radioactive iodine is based on electrophilic radioiodination using oxidizing agents, such as Chloramine T or Iodo-Gen®. For the first time, the present work performed a comparative study of the radiolabeling of β-CIT with iodine-131 (131I), using either Chloramine T or Iodo-Gen® as oxidizing agents, in order to improve the radiolabeling process of β-CIT and to choose the most advantageous oxidizing agent to be used in nuclear medicine. Both radiolabeling methods were similar and resulted in high radiochemical yield (> 95%), with suitable 131I-β-CIT stability up to 72 h. Although Chloramine T is a strong oxidizing agent, it was as effective as Iodo-Gen® for β-CIT radiolabeling with 131I, with the advantage of briefer reaction time and solubility in aqueous medium.