Spin-resolved topology and partial axion angles in three-dimensional insulators.
Kuan-Sen LinGiandomenico PalumboZhaopeng GuoYoonseok HwangJeremy BlackburnDaniel P ShoemakerFahad MahmoodZhi-Jun WangGregory A FieteBenjamin J WiederBarry BradlynPublished in: Nature communications (2024)
Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- ([Formula: see text]-) invariant (helical) 3D TCIs-termed higher-order TCIs (HOTIs)-the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), "spin-Weyl" semimetals, and [Formula: see text]-doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate that β-MoTe 2 realizes a spin-Weyl state and that α-BiBr hosts both 3D QSHI and T-DAXI regimes.