A Bottom-Up Formation Mechanism of Solid Electrolyte Interphase Revealed by Isotope-Assisted Time-of-Flight Secondary Ion Mass Spectrometry.
Zhe LiuPeng LuQinglin ZhangXingcheng XiaoYue QiLong-Qing ChenPublished in: The journal of physical chemistry letters (2018)
Understanding the solid electrolyte interphase (SEI) formation mechanism is critically important for the performance and durability of lithium-ion batteries. However, the details of how SEI builds up into a nanometer-thick layer from molecular level reduction reactions on negative electrodes are missing. Here, isotope-assisted time-of-flight secondary ion mass spectrometry analyses were designed to answer this fundamental question. By investigating the isotope ratio profile in SEI during the initial SEI formation cycle, it is discovered that the topmost SEI near the electrolyte formed first and the SEI near the electrode formed later. This new "bottom-up" SEI growth mechanism was then correlated to the electrolyte one-electron and two-electron reduction reaction dynamics, which in turn explains the formation of the two-layered organic-inorganic SEI composite structure.