Boron-Nitrogen-Doped Nanographenes: A Synthetic Tale from Borazine Precursors.
Jacopo DossoTommaso BattistiBenjamin D WardNicola DemitriColan E HughesP Andrew WilliamsKenneth D M HarrisDavide BonifaziPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
In this work, a comprehensive account of the authors' synthetic efforts to prepare borazino-doped hexabenzocoronenes by using the Friedel-Crafts-type electrophilic aromatic substitution is reported. Hexafluoro-functionalized aryl borazines, bearing an ortho fluoride leaving group on each of the N- and B-aryl rings, was shown to lead to cascade-type electrophilic aromatic substitution events in the stepwise C-C bond formation, giving higher yields of borazinocoronenes than those obtained with borazine precursors bearing fluoride leaving groups at the ortho positions of the B-aryl substituents. By using this pathway, an unprecedented boroxadizine-doped PAH featuring a gulf-type periphery could be isolated, and its structure proven by single-crystal X-ray diffraction analysis. Mechanistic studies on the stepwise Friedel-Crafts-type cyclization suggest that the mechanism of the planarization reaction proceeds through extension of the π system. To appraise the doping effect of the boroxadizine unit on the optoelectronic properties of topology-equivalent molecular graphenes, the all-carbon and pyrylium PAH analogues, all featuring a gulf-type periphery, were also prepared. As already shown for the borazino-doped hexabenzocoronene, the replacement of the central benzene ring by its B3 N2 O congener widens the HOMO-LUMO gap and dramatically enhances the fluorescence quantum yield.