Iridium-, Ruthenium-, and Nickel-Catalyzed C-C Couplings of Methanol, Formaldehyde, and Ethanol with π-Unsaturated Pronucleophiles via Hydrogen Transfer.
Cole C MeyerMichael J KrischePublished in: The Journal of organic chemistry (2022)
In this Perspective, the use of methanol and ethanol as C1 and C2 feedstocks in metal-catalyzed C-C couplings to π-unsaturated pronucleophiles via hydrogen auto-transfer is surveyed. In these processes, alcohol oxidation to form an aldehyde electrophile is balanced by reduction of an π-unsaturated hydrocarbon to form a transient organometallic nucleophile. Mechanistically related reductive couplings of paraformaldehyde mediated by alcohol reductants or formic acid also are described. These processes encompass the first catalytic enantioselective C-C couplings of methanol and ethanol and, more broadly, illustrate how the native reducing ability of alcohols enable the departure from premetalated reagents in carbonyl addition.