Login / Signup

Activating Nitrogen for Electrochemical Ammonia Synthesis via an Electrified Transition-Metal Dichalcogenide Catalyst.

Taylor J AubryJacob M ClaryElisa M MillerDerek Vigil-FowlerJao van de Lagemaat
Published in: The journal of physical chemistry. C, Nanomaterials and interfaces (2024)
The complex interplay between local chemistry, the solvent microenvironment, and electrified interfaces frequently present in electrocatalytic reactions has motivated the development of quantum chemical methods that can accurately model these effects. Here, we predict the thermodynamics of the nitrogen reduction reaction (NRR) at sulfur vacancies in 1T'-phase MoS 2 and highlight how the realistic treatment of potential within grand canonical density functional theory (GC-DFT) seamlessly captures the multiple competing effects of applied potential on a catalyst interface interacting with solvated molecules. In the canonical approach, the computational hydrogen electrode is widely used and predicts that adsorbed N 2 structure properties are potential-independent. In contrast, GC-DFT calculations show that reductive potentials activate N 2 toward electroreduction by controlling its back-bonding strength and lengthening the N-N triple bond while decreasing its bond order. Similar trends are observed for another classic back-bonding ligand in CO, suggesting that this mechanism may be broadly relevant to other electrochemistries involving back-bonded adsorbates. Furthermore, reductive potentials are required to make the subsequent N 2 hydrogenation steps favorable but simultaneously destabilizes the N 2 adsorbed structure resulting in a trade-off between the favorability of N 2 adsorption and the subsequent reaction steps. We show that GC-DFT facilitates modeling all these phenomena and that together they can have important implications in predicting electrocatalyst selectivity for the NRR and potentially other reactions.
Keyphrases