Login / Signup

Adsorption of Bichromate and Arsenate Anions by a Sorbent Based on Bentonite Clay Modified with Polyhydroxocations of Iron and Aluminum by the "Co-Precipitation" Method.

Bakytgul KussainovaGaukhar TazhkenovaIvan KazarinovMarina BurashnikovaAisha NurlybayevaGulnaziya SeitbekovaSaule KantarbayevaNazgul MurzakasymovaElvira BaibazarovaDinara AltynbekovaAssem ShinibekovaAidana Bazarkhankyzy
Published in: Molecules (Basel, Switzerland) (2024)
The physicochemical properties of natural bentonite and its sorbents were studied. It has been established the modification of natural bentonites using polyhydroxoxides of iron (III) (mod.1_Fe_5-c) and aluminum (III) (mod.1_Al_5-c) by the "co-precipitation" method led to changes in their chemical composition, structure, and sorption properties. It was shown that modified sorbents based on natural bentonite are finely porous (nanostructured) objects with a predominance of pores of 1.5-8.0 nm in size. The modification of bentonite with iron (III) and aluminum compounds by the "co-precipitation" method also leads to an increase in the sorption capacity of the obtained sorbents with respect to bichromate and arsenate anions. A kinetic analysis showed that, at the initial stage, the sorption process was controlled by an external diffusion factor, that is, the diffusion of the sorbent from the solution to the liquid film on the surface of the sorbent. The sorption process then began to proceed in a mixed diffusion mode when it limited both the external diffusion factor and the intra-diffusion factor (diffusion of the sorbent to the active centers through the system of pores and capillaries). To clarify the contribution of the chemical stage to the rate of adsorption of bichromate and arsenate anions by the sorbents under study, kinetic curves were processed using equations of chemical kinetics (pseudo-first-order, pseudo-second-order, and Elovich models). It was found that the adsorption of the studied anions by the modified sorbents based on natural bentonite was best described by a pseudo-second-order kinetic model. The high value of the correlation coefficient for the Elovich model (R 2 > 0.9) allows us to conclude that there are structural disorders in the porous system of the studied sorbents, and their surfaces can be considered heterogeneous. Considering that heterogeneous processes occur on the surface of the sorbent, it is natural that all surface properties (structure, chemical composition of the surface layer, etc.) play an important role in anion adsorption.
Keyphrases