Login / Signup

Buchwald-Hartwig coupled conjugated microporous polymer for efficient removal COVID-19 antiviral drug famciclovir from waters: Adsorption behavior and mechanism.

Hai-Chen TuLing-Xi ZhaoLu LiuXiao-Xing WangJin-Ming LinXia WangRu-Song Zhao
Published in: Colloids and surfaces. A, Physicochemical and engineering aspects (2022)
The consumption of famciclovir (FCV) has been increased dramatically since the outbreak of coronavirus in 2019, and the pollution and harm of FCV in waters are concerned. Here, by utilizing aryl halides on 2, 4, 6-tris(4-bromophenyl)- 1, 3, 5-triazine (BPT) and primary amine groups on benzidine (BZ), a novel conjugated microporous polymer, namely BPT-BZ-CMP, was synthesized by Buchwald-Hartwig coupling reaction and applied in the removal of FCV from aqueous solution firstly. The synthesized BPT-BZ-CMP were characterized by various methods, including FTIR, SEM, BET, and Zeta-potential. Due to the micropore structure and high specific surface area, it took only 30 min for BPT-BZ-CMP to adsorb FCV to reach an equilibrium, and the maximum adsorption capacity was 347.8 mg·g -1 . The Liu and pseudo-second-order kinetic models properly fit the adsorption equilibrium and kinetic data, respectively. The adsorption process was a spontaneous process, and the hydrogen bonding, π-π interaction and C-H···π interaction enhanced the adsorption of FCV on BPT-BZ-CMP. BPT-BZ-CMP maintained a good adsorption capacity after four consecutive adsorption-desorption cycle experiments. This study confirmed the potential of BPT-BZ-CMP as efficient sorbent to remove FCV from aqueous solutions.
Keyphrases