Login / Signup

Electronic Modulation of Ru Nanosheet by d-d Orbital Coupling for Enhanced Hydrogen Oxidation Reaction in Alkaline Electrolytes.

Yunbo LiChaoyi YangChuangxin GeNa YaoJinlong YinWenyong JiangHengjiang CongGongzhen ChengWei LuoLin Zhuang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2022)
The alkaline polymer electrolyte fuel cells (APEFCs) hold great promise for using nonnoble metal-based electrocatalysts toward the cathodic oxygen reduction reaction (ORR), but are hindered by the sluggish anodic hydrogen oxidation reaction (HOR) in alkaline electrolytes. Here, a strategy is reported to promote the alkaline HOR performance of Ru by incorporating 3d-transition metals (V, Fe, Co, and Ni), where the conduction band minimum (CBM) level of Ru can be rationally tailored through strong d-d orbital coupling. As expected, the obtained RuFe nanosheet exhibits outstanding HOR performance with the mass activity of 233.46 A g PGM -1 and 23-fold higher than the Ru catalyst, even threefold higher than the commercial Pt/C. APEFC employing this RuFe as anodic catalyst gives a peak power density of 1.2 W cm -2 , outperforming the documented Pt-free anodic catalyst-based APEFCs. Experimental results and density functional theory calculations suggest the enhanced OH-binding energy and reduced formation energy of water derived from the downshifted CBM level of Ru contribute to the enhanced HOR activity.
Keyphrases