The effects of whole-body vibration and head supported mass on performance and muscular demand.
Aaron J DerouinAndrew J LawHeather Wright BeattyViresh WickramasingheDr Steven L FischerPublished in: Ergonomics (2022)
For military rotary-wing aircrew, little is known about the interactive effects of vibration exposure and the addition of head supported mass (HSM) on target acquisition performance, head kinematics, and muscular demand. Sixteen healthy male participants wore an aviator helmet with replica night vision goggles and completed rapid aiming head movements to acquire visual targets in axial and off-axis movement trajectories while secured in a Bell-412 helicopter seat mounted to a human-rated shaker platform. HSM configuration (with or without a counterweight (CW)) and vertical whole-body vibration (WBV) conditions (vibration or no vibration exposure) were manipulated as independent variables. WBV exposure degraded target acquisition performance and lengthened time to peak velocity of head movements. For yaw peak velocity in the axial movement trajectory, peak velocity was 9.9%, 11.6%, and 8.4% higher in the noCW + WBV condition compared to the CW + WBV, CW + noWBV, and noCW + noWBV conditions, respectively. Practitioner summary: The majority of military helicopter aircrew use a counterweight to counteract the anteriorly displaced load of night vision googles. This study was undertaken to better understand how helicopter vibration and counterweight use interactively affect performance and health-related measures during rapid scanning head movements.