Login / Signup

Improvement in Essential Oil Quantity and Quality of Thyme ( Thymus vulgaris L.) by Integrative Application of Chitosan Nanoparticles and Arbuscular Mycorrhizal Fungi under Water Stress Conditions.

Mostafa Amani MachianiAbdollah JavanmardAli OstadiKhoshnood Alizadeh
Published in: Plants (Basel, Switzerland) (2023)
Water stress is one of the critical abiotic stresses and limiting factors in the productivity of plants, especially in arid and semi-arid regions. In recent years, the application of bio-fertilizer and stress-modulating nanoparticles (NPs) is known as one of the eco-friendly strategies for improving plants quantity and quality under stressful conditions. In order to achieve the desirable essential oil (EO) quality and quantity of thyme in water deficit conditions, a 2-year field experiment was carried out as a split plot based on the randomized complete block design (RCBD), with 12 treatments and three replications. The treatments included different irrigation levels, containing irrigation at 80% field capacity (FC80) as no stress, 60% FC as moderate water stress (FC60) and 40% FC as severe water stress (FC40), as well as four different fertilizer sources, including non-application of fertilizer (control), application of arbuscular mycorrhizal fungi (AMF), chitosan NPs (CHT) and co-application of AMF+CHT NPs. The results demonstrated that the dry yield of thyme decreased by 13% and 40.3% under FC60 and FC40 water stress conditions. However, co-application of AMF+CHT NPs enhanced the dry yield of thyme by 21.7% in comparison to the control (non-application of fertilizer). The maximum EO content (2.03%) and EO yield (10.04 g 7 g m -2 ) of thyme were obtained under moderate water stress (FC60) fertilized with AMF+CHT NPs. Co-application of AMF+CHT NPs enhanced the EO content and EO yield of thyme by 17.1% and 42.7%, respectively. Based on the GC-MS and GC-FID analysis, 38 constituents were identified in the thyme EO, with the major constituents being thymol (35.64-41.31%), p -cymene (16.35-19.38%), γ -terpinene (12.61-13.98%) and carvacrol (2.78-3.93%) respectively. The highest content of thymol and γ -terpinene was obtained under moderate water stress (FC60) fertilized with AMF+CHT NPs. In addition, the highest content of p -cymene and carvacrol was observed in the severe water stress (FC40) fertilized with AMF+CHT NPs. The present research suggests that the co-application of AMF+CHT NPs represents a sustainable and eco-friendly strategy for improving the EO quantity and quality of thyme under water stress conditions.
Keyphrases
  • essential oil
  • stress induced
  • drug delivery
  • high intensity
  • clinical trial
  • quality improvement
  • climate change
  • transcription factor
  • drinking water
  • double blind
  • high resolution
  • study protocol
  • hyaluronic acid